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Main Points
•  The least absolute shrinkage and selection operator regression exhibited the highest predictive accuracy in estimating vertebral skeletal age.
•   Vertebral depth of concavities emerged as a significant predictor of skeletal age in both sexes.
•  Vertebral skeletal age estimation did not demonstrate a clinical advantage over chronological age.
•  Vertebral skeletal age estimation showed greater variability in boys than in girls, indicating lower consistency with hand-wrist skeletal age 

assessment.

ABSTRACT
Objective: To compare skeletal ages determined using three different regression methods from measurements made on cervical 
vertebrae from lateral cephalometric radiographs (LCRs) with the skeletal age determined from hand-wrist radiographs (HWRs).

Methods: LCRs and HWRs of 794 individuals (329 boys, 465 girls) aged 7-18 years were examined. The hand-wrist skeletal age of the 
participants was determined using the Greulich-Pyle (GP) atlas. Forty-four linear and nine angular morphometric measurements in 
the C2-C5 vertebrae were made in LCRs. Vertebral skeletal age (VSA) was determined in both sexes using Ridge, The least absolute 
shrinkage and selection operator (LASSO), and ElasticNet regression methods. The study results were evaluated using R2 (explainability 
power). Bland-Altman analysis was performed to determine the consistency of chronologic age (CA), GP age, and VSAs.

Results: LASSO regression showed the highest explainability power for VSA, with boys at 0.783 and girls at 0.741. In both sexes, the 
vertebral depth of concavities had high beta coefficients, and the posterior height of C3 vertebrae (TVup-TVlp) had the highest beta 
coefficient in boys in LASSO regression. The width of the limits of agreement in both CA and VSA graphs of GP age was wider in boys 
than in girls. The width of the limits of agreement of CA-VSAs was wider in girls than in boys.

Conclusion: Although high R2 values were obtained, VSA showed no superiority over CA in the assessment of skeletal age, and no 
significant clinical advantage was observed. For the Turkish population, using GP age may be more accurate for determining skeletal 
age in orthodontic treatment planning.
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INTRODUCTION

Assessing growth potential during pre-adolescence and 
adolescence is crucial, and various indicators such as body 
height and weight, sexual maturation, chronologic age (CA), 
dental development, and skeletal development can be used 
to identify growth stages. The identification of the growth and 
development stage of an individual has a significant impact 
on the diagnosis, treatment planning, and treatment outcome 
of orthodontic treatment. Although CA is commonly used, it 
may not always be a reliable indicator for growth stages due 
to variations in the timing, velocity, and duration of growth 
among individuals.1 Skeletal age is commonly evaluated in 
orthodontics via hand-wrist radiographs (HWRs) or lateral 
cephalometric radiographs (LCRs).2

The Greulich-Pyle (GP) atlas is commonly used to determine 
patients’ skeletal age by evaluating the maturation of the hand 
and wrist bones. The main use of skeletal age in orthodontic 
treatment is the determination of the timing of orthopedic 
treatment or the confirmation of the end of growth.3 HWRs 
are considered the gold standard; the other most commonly 
used method for evaluating skeletal maturity in orthodontics 
is cervical vertebral maturation (CVM), which is based on 
assessing the maturation stage of the cervical vertebrae.4,5 
It is often suggested that HWRs in orthodontics should be 
limited to cases where the information obtained is considered 
essential for treatment planning and cannot be obtained by 
other means, given the importance of minimizing radiographic 
exposure.6

To objectify skeletal age assessment and make it more efficient, 
many artificial intelligence (AI) systems have been developed 
to increase diagnostic accuracy mostly via HWRs.7 Due to the 
significant correlation  between hand-wrist bone and CVM, 
most AI studies have focused on classifying developmental 
phases and comparing AI AI-based classifications with human 
diagnoses. However, skeletal age estimation has not been 
thoroughly studied. The clinical application of these studies 
was limited because they focus on evaluating success metrics 
rather than automated systems.8,9 To address this gap, this 
study aims to evaluate cervical vertebrae maturity using a 
quantitative method of morphologic changes.

Regression-based methods determine how independent factors 
affect a dependent variable by identifying a non-deterministic 
function representing the independent variables’ effect on the 
dependent variable’s mean. While regression procedures are 
straightforward, they require a suitable model for data fitting. 
Predictions can be made by applying the parameters obtained 
in a clinical application into the regression formula.10 Ridge, 
The least absolute shrinkage and selection operator (LASSO), 
and ElasticNet are regression models are commonly used in 
multiple linear regression problems to prevent overfitting. 
Optimizing the selection of the proper technique and fine-
tuning the hyperparameters via cross-validation is essential 
for constructing a model that effectively manages bias and 
variance, thereby enhancing predicted accuracy.11 

The explainability power (R2) provides valuable information 
regarding the degree to which the analyzed data can 
understand the dependent variable. The higher the R2 value, 
the higher the capacity of the obtained data to describe the 
dependent variable.12-14 The predominant methodology in 
the scholarly literature for estimating skeletal age through 
vertebral parameters involved stepwise regression analysis.15-18 
To our knowledge, no previous study in the literature includes a 
quantitative approach with AI regression methods to determine 
skeletal age through LCRs. 

Although correlation analysis can compare actual and 
regression-predicted skeletal age studies, it only evaluates 
the connection between variables, not their differences.15,17 
The Bland-Altman analysis offers an alternative approach 
by quantifying the agreement between two quantitative 
measures by calculating the mean difference and agreement 
limits. However, Bland-Altman plots only depict the range 
of agreement without indicating whether it is acceptable. 
Acceptable limits must be determined based on predefined 
clinical requirements, biologic considerations, or other relevant 
goals.19 Also, there is limited research explicitly addressesing R2 
in skeletal age determination using vertebral measurements 
and assessing the compatibility and repeatability [vertebral 
skeletal age (VSA) -GP age] of this method through Bland-
Altman analysis.20

The aim of this study was to develop a predictive model of  
VSA by using Ridge, LASSO, and ElasticNet regression models.

The null hypothesis of the study was that there would be no 
significant difference between the vertebral age prediction 
models developed using Ridge, LASSO, and ElasticNet 
regression.

METHODS

Study Design
The study received ethical approval from the Research 
Ethics Committee of Recep Tayyip Erdoğan University 
(date: 02.02.2023 and protocol number: 33) and involved a 
retrospective analysis of LCRs and HWRs from patients referred 
for orthodontic treatment at the Department of Orthodontics, 
Faculty of Dentistry at Recep Tayyip Erdoğan University. The 
study was conducted in accordance with the applicable ethical 
principles of the World Medical Association Declaration of 
Helsinki of 1964 and later versions.21 Informed written consent 
forms, which included the use of patient records in scientific 
studies, were obtained from all patients at the beginning of 
treatment. Patients who met specific criteria were included in 
the study, including individuals of Turkish ethnicity, between 
the ages of 7-18 years, with good quality LCRs and HWRs, 
normal growth and development, no systemic disease, no 
congenital deformities, no bone syndromes, no previous hand-
wrist injury, and good nutrition without serious illness. LCRs 
and HWRs were taken on the same day and all LCRs included 
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in the study were of sufficient quality, with a clear view of the 
cervical spine (C2-C5).

The LCRs and HWRs were acquired using a Planmeca Promax 
2D S2 imaging unit (Planmeca Oy; Helsinki, Finland) with 
specific exposure parameters (66 kVp, 10 mA, 10.5 s in LCRs, 
60 kVp, 4 mA, and 10.5 s in HWRs). During LCR acquisition, ear 
rods, and nasal support were used to stabilize the head, and the 
Frankfort horizontal plane was set parallel to the floor. HWRs 
were obtained using a specific focus-to-film distance of 170 cm 
and 30° angulation of the thumb to allow for the depiction of 
the sesamoid bone.

In the sample size calculation performed considering the 
number of independent variables as 53, the adjusted R2=0.686 
result in the study of Varshosaz et al.15, 95% confidence (1-α), 
95% test strength (1-β), and f2=2.185 effect size, the minimum 
required number of samples was determined as 69.

A total of 1257 individuals’ LCRs and HWRs were reviewed, 
and radiographs from 463 individuals who did not meet the 
inclusion criteria were excluded from the study. We analyzed 
794 sets of radiographs (LCR and HWR) of untreated subjects 
(329 boys, 465 girls) and identified 27 cervical vertebral 
reference points (Figure 1) for the analysis and obtained 44 
linear and nine angular morphometric measurements (Figures 
2 and 3), which were located in the C2-C5 vertebrae. The GP 
age was determined using the HWR images.

All LCRs were calibrated using a 45-mm-long bar, and 
linear and angular measurements were performed by an 
orthodontist with 4 years of orthodontic clinical experience 
using AudaxCeph version 4.2.0.3101 software. To assess the 
intra-rater and inter-rater agreement, a random sample of 393 
LCRs and HWRs was chosen. The measurements were repeated 
after 1 month by the same orthodontist with 4 years of clinical 
experience to determine intra-rater reproducibility. Another 
orthodontist with 10 years of clinical experience performed 
the measurements to evaluate inter-rater reliability. The 
intraclass correlation coefficient (ICC) was used to assess the 
measurement error.

Regression Methods
Ridge, LASSO, and ElasticNet are all regression models 
used in multiple linear regression problems to prevent 
overfitting. Choosing the appropriate method and tuning 
the hyperparameters through cross-validation are crucial 
for building a model that balances bias and variance, thus 
improving predictive performance.12,14

Multicollinearity occurs when independent variables in a 
regression model are highly correlated, making it difficult to 
determine each variable’s effect. This issue can be detected 
using the variance inflation factor (VIF) and tolerance values. A 
VIF above 10 or a tolerance below 0.2 indicates multicollinearity. 
Regularization techniques such as Ridge, LASSO, and 
ElasticNet address multicollinearity by adding a penalty term 

to the regression model, which helps shrink the coefficients of 
correlated variables.

Ridge regression incorporates an L2 penalty, the sum of squared 
coefficients, into the loss function. This technique is particularly 
effective when dealing with many small and approximately 
equal coefficients because it distributes the values evenly 
among correlated variables. By using the lambda (λ) parameter, 
Ridge regression controls the strength of the L2 regularization. 

Figure 1. 1.SVp: The most posterior point of the lower edge of the 
2nd cervical vertebra, 2.SVd: The deepest point of the concavity at 
the lower edge of the 2nd cervical vertebra, 3.SVa: The most anterior 
point of the lower edge of the 2nd cervical vertebra, 4.TVup: The most 
posterior point of the upper edge of the 3rd cervical vertebra, 5.TVum: 
Midpoint of the upper edge of the 3rd cervical vertebra, 6.TVua: The 
most anterior point of the upper edge of the 3rd cervical vertebra, 
7.TVpm: Midpoint of the posterior border of the 3rd cervical vertebra, 
8.TVam: Midpoint of the anterior edge of the 3rd cervical vertebra, 
9.TVlp: The most posterior point of the lower border of the 3rd cervical 
vertebra, 10.TVd: The deepest point of the concavity at the lower edge 
of the 3rd cervical vertebra, 11.TVla: The most anterior point of the 
lower border of the 3rd cervical vertebra, 12.FVup: The most posterior 
point of the upper edge of the 4th cervical vertebra, 13.FVum: Midpoint 
of the upper edge of the 4th cervical vertebra, 14.FVua: The most 
anterior point of the upper edge of the 4th cervical vertebra, 15.FVpm: 
Midpoint of the posterior edge of 4th cervical vertebra, 16.FVam: The 
midpoint of the anterior edge of the 4th cervical vertebra, 17.FVlp: The 
most posterior point of the lower edge of the 4th cervical vertebra, 
18.FVd: The deepest point of the concavity at the lower edge of the 4th 
cervical vertebra, 19.FVla: The most anterior point of the lower edge 
of the 4th cervical vertebra, 20.FiVup: The most posterior point of the 
upper edge of the 5th cervical vertebra, 21.FiVum: Midpoint of the 
upper edge of the 5th cervical vertebra, 22.FiVua: The most anterior 
point of the upper edge of the 5th cervical vertebra, 23.FiVpm: Midpoint 
of the posterior edge of 5th cervical vertebra, 24.FiVam: The midpoint 
of the anterior border of the 5th cervical vertebra, 25.FiVlp: The most 
posterior point of the lower border of the 5th cervical vertebra, 26.FiVd: 
The deepest point of the concavity at the lower edge of the 5th cervical 
vertebra, 27.FiVla: The most anterior point of the lower border of the 
5th cervical vertebra
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This regularization term penalizes large coefficients, thereby 
reducing their variance without eliminating any variables, and 
mitigating multicollinearity in the model.12 LASSO regression 
applies an L1 penalty, which is the sum of the absolute values 
of coefficients. This approach can shrink some coefficients to 
zero, effectively performing variable selection by eliminating 
less important predictors. This makes it particularly useful 
when only a few predictors are expected to be significant. 
LASSO regression uses the lambda (λ) parameter to control the 

strength of the L1 regularization, which penalizes the absolute 
values of the coefficients and enables variable selection by 
shrinking some coefficients to zero.13 ElasticNet combines 
both L1 and L2 penalties, offering a balance between Ridge 
and LASSO regressions. This approach is advantageous when 
multiple correlated predictors are present, and some need to 
be eliminated. ElasticNet regression uses lambda (λ) and alpha 
(α) parameters. Lambda (λ) controls the overall strength of 
the regularization, and alpha (α) determines the mix between 
L1 and L2 regularization. When alpha is 0, ElasticNet behaves 
like Ridge regression; when alpha is 1, it behaves like LASSO 
regression. Values between 0 and 1 provide a balance between 
the two methods. The optimal values of the regularization 
parameters in Ridge, LASSO, and ElasticNet regression are 
determined by minimizing the mean squared error.14

The performance of these models is typically evaluated using 
metrics such as R2 and the Akaike information criterion (AIC) (to 
measure the model’s fit and complexity).12,14 Cross-validation is a 
method used to evaluate the performance of machine-learning 
models. Among various methods, k-fold cross-validation is the 
most widely used. The dataset is divided into k parts, and each 
of the k parts is used separately as the test dataset, and the 
remaining dataset is used as the training dataset. This process is 
repeated k times, and the mean of the test errors obtained each 
time is used to predict the model’s performance. K-fold cross-
validation method ensures that all the samples in the dataset 
are used to train the model. After k cross-validation, the mean 
error is calculated for the training and test data and expresses 
how much the predicted values deviate from the actual values. 
A lower mean error value means a better fit and more accurate 
predictions. Cross-validation, especially k-fold cross-validation, 
is often used to tune the hyperparameters (lambda and alpha), 
ensuring that the model generalizes well to new data.12,14

Statistical Analysis
Statistical analysis was performed using the Eviews v12 
program (IHS Markit Ltd, London, UK). Descriptive statistics were 
calculated as mean, standard deviation, median, minimum/
maximum (min./max.), Kurtosis, and Skewness. Vertebral 
morphometric measurements were included to generate a 
calculated VSA. The ENET-ElasticNet regularization method was 
used for estimating skeletal age. Estimation was made using 
Ridge, LASSO, and ElasticNet regression models included in 
the method. Lambda hyperparameter was used in Ridge and 
LASSO methods and the optimal lambda value was determined 
according to the min./max. ratio (0.0001) according to the 
minimum mean square error within 50 periods. In ElasticNet 
regression, both lambda and alpha editing parameters were 
used and the alpha value was automatically taken as 0.5. Bland-
Altman analysis was used to assess the agreement among 
different methods of age estimation, including the GP age, VSA 
(Ridge, LASSO, ElasticNet), and CA. Limits of agreement were 
identified.

Figure 2. 1st SVp-SVa, 2nd TVup-TVua, 3rd TVpm-TVam, 4th TVlp-TVla, 5th 
FVup-FVua, 6th FVpm-FVam, 7th FVlp-FVla, 8th FiVup-FiVua, 9th FiVpm-
FiVam, 10th FiVlp-FiVla, 11th TVup-TVlp, 12th TVum-TVd, 13th TVua-TVla, 
14th FVup-FVlp, 15th FVum-FVd, 16th FVua-FVla, 17th FiVup-FiVlp, 18th 
FiVum-FiVd, 19th FiVua-FiVla, 20th SVD, 21st TVD, 22nd FVD, 23rd FiVD

Figure 3. PH3, H3, AH3, PH4, H4, AH4, PH5, H5, AH5, UW3, LW3, UW4, 
LW4, UW5, LW5, X3, Y3, X4, Y4, X5, Y5, D3 angle, D4 angle, D5 angle, 
K3, K4, K5, SI3, SI4, SI5
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RESULTS

Measurement Error
The intra-rater and inter-rater agreements were estimated 
using the intra-class correlation coefficient (ICC) and were 
found to be excellent for all vertebral measurements (ICC 
≥0.977, and ICC ≥0.960, respectively). Both intra-observer and 
inter-observer agreements of GP skeletal age were 0.997 (95% 
confidence interval: 0.996 to 0.997) with excellent reliability.

The First Phase of the Regression Methods
The descriptive statistics in the study are demonstrated for each 
sex (Table 1). Independent variables with VIF values greater 
than 10 are shown in bold (Table 2). Our study was conducted 
separately for both girls and boys.

Statistical analysis consisted of two parts. In the first part, 
all independent variables (vertebral measurements) were 
evaluated. The target variable was GP age. To obtain the VSA, 
three regression methods were used. In the second part, the 
analyses were repeated with the variables with the highest 
beta coefficients obtained from each regression model.

In the initial phase of the statistical analysis, the lambda values 
were chosen based on minimum mean square error values. The 
beta coefficients and lambda values for each regression model 
were determined separately for boys and girls, and the results 
are presented in Table 3. The R2 values obtained in the first 
stage of the statistical analysis were between 0.799 and 0.804.

In boys, all variables except one in the Ridge and ElasticNet 
regressions and 15 variables in the LASSO regression had non-
zero beta coefficients. In girls, all variables in the Ridge and 
ElasticNet regressions and all variables except 11 in the LASSO 
regression had non-zero beta coefficients.

The Second Phase of the Regression Methods
Due to the high number of independent variables (n=53) 
statistically evaluated in our study, in the second part of the 
analysis, the beta coefficients were examined to determine 
which variables had the greatest impact on the regression 
models and to select the most important variables for clinical 
applicability. Separate analyses were conducted for boys and 
girls, and the eight variables with the highest coefficients in 
each regression model were chosen.

For both girls and boys, eight measurements with the highest 
coefficients were selected in each regression model, and a 
total of 24 measurements were determined. In boys, for the 
elimination of 24 measurements selected for the second part of 
the statistical analysis, the first three measurements (SVD, FiVD, 
FVD) were common to all three regression models and had 
the highest beta coefficients, and PH3, TVD, TVup-TVlp, and Y3 
measurements, which were common to all three models, were 
selected. In addition, UW3, which was common to ElasticNet 
and Ridge regressions was selected. For boys, the selected 
measurements were SVD, FiVD, FVD, PH3, TVD, TVup-TVlp, Y3, 
and UW3 (Figure 4a, Table 4). In girls, for the elimination of 24 

Table 1. The descriptive statistics for each sex
Boys=329 Girls=465

Measurements Mean Standard 
deviation Mean Standard 

deviation
Skeletal age 12.9 3.1 13.6 2.7
SVp-SVa 13.2 1.5 11.8 1.1
TVup-TVua 13.1 1.6 11.9 1.3
TVpm-TVam 13.8 1.6 12.9 1.3
TVlp-TVla 13.9 1.4 12.7 1.2
FVup-FVua 13.5 1.7 12.4 1.3
FVpm-FVam 13.7 1.7 12.7 1.4
FVlp-FVla 14.0 1.7 12.8 1.3
FiVup-FiVua 13.6 2.0 12.4 1.5
FiVpm-FiVam 13.8 1.9 12.7 1.4
FiVlp-FiVla 14.4 1.9 13.2 1.4
TVup-TVlp 10.8 2.5 11.2 2.0
TVum-TVd 9.4 2.2 9.9 1.7
TVua-TVla 9.0 2.6 10.0 2.4
FVup-FVlp 10.6 2.4 10.9 2.0
FVum-FVd 9.2 1.9 9.6 1.7
FVua-FVla 8.5 2.2 9.3 2.2
FiVup-FiVlp 10.4 2.4 10.8 2.1
FiVum-FiVd 9.3 1.9 9.5 1.6
FiVua-FiVla 8.3 2.1 9.1 2.0
SVD 1.2 0.7 1.4 0.6
TVD 0.9 0.7 1.1 0.7
FVD 0.8 0.6 1.0 0.6
FiVD 0.7 0.6 0.9 0.6
X3 18.7 2.6 18.1 2.0
Y3 14.5 2.1 14.1 1.7
X4 18.4 2.6 17.8 2.1
Y4 14.8 2.2 14.4 1.8
X5 18.3 2.7 17.6 2.1
Y5 15.2 2.4 14.7 1.8
D3 angle 109.2 12.1 99.6 11.7
D4 angle 111.7 10.6 103.4 10.9
D5 angle 113.7 10.0 105.2 10.4
K3 angle 36.4 8.2 42.9 8.4
K4 angle 33.8 6.6 39.3 7.3
K5 angle 32.2 6.1 37.3 6.5
SI3 angle 8.7 5.3 6.9 5.7
SI4 angle 9.6 4.9 8.0 4.8
SI5 angle 9.5 4.8 8.5 4.5
PH3 10.6 2.5 11.0 2.0
H3 10.1 2.6 10.8 2.0
AH3 8.7 2.6 9.6 2.3
PH4 10.5 2.4 10.8 2.0
H4 9.7 2.3 10.4 2.0
AH4 8.2 2.2 9.1 2.1
PH5 10.4 2.4 10.7 2.1
H5 9.7 2.2 10.2 1.9
AH5 8.1 2.1 8.9 2.0
UW3 12.5 1.5 11.4 1.2
LW3 13.8 1.4 12.5 1.2
UW4 12.9 1.7 11.9 1.3
LW4 13.8 1.7 12.7 1.3
UW5 13.2 1.9 12.1 1.4
LW5 14.3 1.9 13.1 1.5
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measurements selected for the second part of the statistical 
analysis, SVD, FVD, TVum-TVd, TVpm-TVam, UW4, and Y3, which 
are common to all three regression models and have high beta 
coefficients were selected.

In addition, FiVD, which is common to Ridge and ElasticNet 
regression, and UW5, which is common to LASSO and Ridge 
regression, were selected. For girls, the selected measurements 
were SVD, FVD, TVum-TVd, TVpm-TVam, UW4, Y3, FiVD, and 
UW5 (Figure 4b, Table 4).

The lambda values and beta coefficients were recalculated 
based on new datasets created separately for each sex.

In the second phase of the statistical analysis, the lambda 
values were chosen based on minimum mean square error 
values. The minimum mean square error for boys was 
obtained at lambda values 0.0762, 0.000148, and 0.002344 
for the Ridge, LASSO, and ElasticNet, respectively. For girls, the 
minimum mean square error was obtained at lambda values of 
0.04913915, 0.00003718, and 0.00000113 for the Ridge, LASSO, 
and ElasticNet regression, respectively.

The R2 values obtained in the second stage of the statistical 
analysis were between 0.740 and 0.783. The highest R2 in 
both boys and girls was obtained using LASSO regression 
(respectively, R2=0.783, 0.741) (Table 5), and the performance 
of each regression model was assessed using 10-fold cross-
validation. 

The means and errors for both the training and test datasets 
from the initial and second parts of the analyses are presented 
in Table 6.

Vertebral skeletal age formulas obtained in each regression 
model in boys:

Ridge regression: VSA=0.318*FVD + 0.561*FiVD + 0.307*PH3 
+ 0.487*SVD - 0.059*TVD + 0.33*TVup-TVlp + 0.025*UW3 + 
0.252*Y3 + 0.889

LASSO regression: VSA=0.185*FVD + 0.534*FiVD + 0.019*PH3 
+ 0.448*SVD + 0*TVD + 0.647*TVup-TVlp + 0*UW3 + 0.259*Y3 
+ 0.868

ElasticNet regression: VSA= 0.323*FVD + 0.564*FiVD + 
0.306*PH3 + 0.483*SVD – 0.048*TVD + 0.326*TVup-TVlp + 
0.031*UW3 + 0.249*Y3 + 0.906

Vertebral skeletal age formulas obtained in each regression 
model in girls:

Ridge regression: VSA=0.528*FiVD + 0.909*FVD + 0.638*SVD + 
0.023*TVpm-Tvam + 0.508*TVum-TVd -0.138*UW4 - 0.064*UW5 
+ 0.456*Y3 + 1.988

LASSO regression: VSA=0.481*FiVD + 0.935*FVD + 0.614*SVD 
+ 0*TVpm-Tvam + 0.513*TVum-TVd -0.149*UW4 - 0.065*UW5 
+ 0.494*Y3 + 1.892

Table 2. Tolerance and VIF values in boys and girls

Measurements
Boys Girls
Tolerance VIF Tolerance VIF

 FVup-FVlp 0 26202.8 0 13112.1
AH3 0 3996.27 0.001 1840.53
AH4 0 3782.6 0 5082.87
AH5 0 2757.9 0 2051.75
SI3 angle 0.003 324.895 0.004 284.422
SI4 angle 0.004 226.826 0.004 250.702
SI5 angle 0.008 133.063 0.006 178.519
D3 angle 0 2681.55 0 2326.59
D4 angle 0 2017.23 0 2474.24
D5 angle 0.001 1416.93 0.001 1722.65
FiVD 0.184 5.429 0.138 7.267
FiVlp-FiVla 0.001 1481.23 0.001 947.5
FiVpm-FiVam 0.046 21.886 0.092 10.886
FiVua-FiVla 0 2072.05 0.001 1479
FiVum-FiVd 0.026 37.796 0.026 38.321
FiVup-FiVlp 0 10946.8 0 34200
FiVup-FiVua 0.001 670.271 0.001 850.398
FVD 0.137 7.278 0.105 9.536
FVlp-FVla 0.001 1441.84 0.001 810.977
FVpm-FVam 0.049 20.232 0.066 15.11
FVua-FVla 0 3653.2 0 4776.87
FVum-FVd 0.019 51.932 0.019 51.533
FVup-FVua 0.001 1114.8 0.001 747.306
H3 0.007 144.1 0.008 127.789
H4 0.01 103.722 0.009 109.27
H5 0.013 75.204 0.012 80.036
K3 angle 0 2676.69 0 2289.14
K4 angle 0.001 1527.84 0.001 1992.53
K5 angle 0.001 917.457 0.001 1358.53
LW3 0.002 578.674 0.001 772.953
LW4 0.001 1185.02 0.002 632.613
LW5 0.001 1133.61 0.001 844.341
PH3 0 18165.8 0.001 1177.72
PH4 0.001 1125.44 0.001 1337.63
PH5 0.001 1018.7 0.001 847.303
SVD 0.353 2.835 0.405 2.47
SVp-SVa 0.311 3.216 0.395 2.529
TVD 0.091 10.972 0.084 11.935
TVlp-TVla 0.002 635.172 0.001 973.426
TVpm-TVam 0.058 17.144 0.091 10.958
TVua-TVla 0 3760.9 0.001 1771.12
TVum-TVd 0.014 71.786 0.014 69.296
TVup-TVlp 0.001 1308.24 0 8472.63
TVup-TVua 0.001 731.716 0.002 481.131
UW3 0.002 504.403 0.003 368.668
UW4 0.001 952.503 0.002 652.179
UW5 0.001 685.526 0.001 741.698
X3 0.001 1729.68 0.001 979.453
X4 0.001 1753.84 0.001 1404.84
X5 0.001 1302.94 0.001 1081.78
Y3 0.002 492.202 0.003 330.541
Y4 0.001 682.317 0.002 615.488
Y5 0.002 572.438 0.002 521.382
Independent variables with a VIF value of 10 or more are demonstrated in bold
VIF: The variance inflation factor
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Table 3. The model results obtained according to the minimum mean square error as a result of the Ridge, LASSO, and ElasticNet regression 
models in boys and girls in the first part of the analysis

Boys Girls
Ridge LASSO ElasticNet Ridge LASSO ElasticNet

Lambda 0.809 0.000398 0.000027 0.05002 0.000012 0.0000012
SVp-SVa -0.01 0 -0.005 0.029 0.023 0.019
TVup-TVua 0.04 0.032 0.039 -0.058 -0.026 -0.035
TVpm-TVam -0.001 0 0.003 0.164 0.205 0.137
TVlp-TVla 0.024 0 0.023 -0.07 -0.083 -0.065
FVup-FVua 0.015 0.001 0.017 0.104 0.104 0.084
FVpm-FVam 0.028 0.014 0.027 -0.062 -0.087 -0.04
FVlp-FVla 0.012 0 0.012 -0.056 -0.046 -0.067
FiVup-FiVua 0.018 0 0.018 0.05 0.014 0.046
FiVpm-FiVam 0 0 0 0.098 0.1 0.08
FiVlp-FiVla -0.006 0 -0.002 -0.05 -0.075 -0.047
TVup-TVlp 0.045 0.072 0.043 0.051 0.021 0.054
TVum-TVd 0.047 0.057 0.045 -0.173 -0.259 -0.11
TVua-TVla 0.025 0.014 0.025 -0.007 0 0.005
 FVup-FVlp 0.038 0.061 0.037 0.042 0.01 0.043
FVum-FVd 0.023 0.008 0.025 -0.038 -0.014 -0.021
FVua-FVla 0.03 0.014 0.031 -0.032 -0.036 -0.004
FiVup-FiVlp 0.035 0.051 0.033 0.009 0 0.015
FiVum-FiVd 0.012 0 0.016 0.022 0 0.011
FiVua-FiVla 0.025 0.008 0.026 -0.014 0 0.002
SVD 0.234 0.307 0.215 0.211 0.186 0.218
TVD 0.103 0.06 0.107 0.046 -0.016 0.106
FVD 0.146 0.123 0.144 0.374 0.418 0.362
FiVD 0.183 0.178 0.178 0.112 0.06 0.116
X3 0.023 0.032 0.024 -0.033 -0.029 -0.022
Y3 0.052 0.072 0.048 0.11 0.139 0.098
X4 0.021 0.03 0.022 -0.044 -0.048 -0.026
Y4 0.029 0.027 0.028 0.063 0.036 0.062
X5 0.019 0.022 0.019 -0.017 0 -0.01
Y5 0.017 0.007 0.018 0.069 0.059 0.06
D3 angle -0.01 -0.012 -0.01 -0.024 -0.039 -0.021
D4 angle -0.012 -0.014 -0.012 -0.029 -0.045 -0.023
D5 angle -0.011 -0.012 -0.011 -0.023 -0.028 -0.018
K3 angle 0.008 0 0.008 0.017 0.012 0.014
K4 angle 0.013 0.003 0.013 0.031 0.03 0.023
K5 angle 0.011 0 0.011 0.025 0.022 0.02
SI3 angle 0.012 0 0.011 0.014 0.012 0.011
SI4 angle 0.013 0 0.013 -0.002 0.002 -0.001
SI5 angle 0.02 0.011 0.019 -0.007 -0.002 -0.006
PH3 0.047 0.07 0.045 0.072 0.076 0.071
H3 0.039 0.048 0.036 0.095 0.116 0.064
AH3 0.03 0.021 0.029 0.029 0 0.03
PH4 0.039 0.052 0.038 0.036 0 0.041
H4 0.031 0.032 0.031 0.091 0.085 0.071
AH4 0.034 0.033 0.034 0.001 0 0.016
PH5 0.035 0.043 0.034 0.016 0 0.02
H5   0.033 0.037 0.032 -0.014 -0.001 0.002
AH5 0.029 0.017 0.029 0.002 0 0.014
UW3 0.049 0.046 0.047 0.099 0.068 0.076
LW3 0.025 0 0.023 -0.019 0 -0.021
UW4 0.023 0.014 0.023 0.157 0.228 0.128
LW4 0.015 0.001 0.015 -0.052 -0.025 -0.06
UW5 0.018 0.001 0.018 0.11 0.165 0.091
LW5 -0.006 0 -0.002 -0.027 -0.005 -0.032
c 2.869 5.309 2.756 8.661 12.86 7.636
df 53 53 53 53 53 53
L1 Norm 4.693 6.964 4.53 11.861 15.918 10.475
R-squared 0.801 0.801 0.8 0.802 0.804 0.799
AIC 0.521 0.522 0.522 0.426 0.424 0.429
LASSO: Least absolute shrinkage and selection operator, AIC: Akaike information criterion
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ElasticNet regression: VSA=0.543*FiVD + 0.891*FVD + 
0.642*SVD + 0.033*TVpm-Tvam + 0.498*TVum-TVd - 0.126*UW4 
- 0.055*UW5 + 0.435*Y3 + 1.985

The highest power of explainability was obtained using LASSO 
regression for both girls and boys (Table 5). 

Bland-Altman Analysis
Figures 5 and 6 display the Bland-Altman plots illustrating 
the consistency of inter-age measurements for boys and girls, 
respectively, including CA, GP age, Ridge regression age, LASSO 
regression age, and ElasticNet age. The plots depict a solid line 
indicating zero bias, the middle-dashed line represents the 
bias, and the outer dashed lines define the limits of agreement.

DISCUSSION

This study identified key findings in skeletal age prediction 
using Ridge, LASSO, and ElasticNet regression models. Among 
these, LASSO regression demonstrated the highest R² values 
(0.783 in boys and 0.741 in girls). Additionally, in both sexes, the 
vertebral depth of concavities exhibited high beta coefficients, 
highlighting their significance in skeletal age estimation. The 
Bland-Altman analysis indicated that the limits of agreement 
for GP age with CA and VSA were wider in boys than in girls, 
whereas the limits of agreement between CA and VSA were 
wider in girls than in boys.

Furthermore, although LASSO exhibited the highest R², the 
observed differences in predictive accuracy among Ridge, 
LASSO, and ElasticNet regression models suggest that the 
assumption of equal model performance does not hold. The 
performance variations among models differed, leading to 
the rejection of the null hypothesis (H₀), which stated that 
there would be no difference between VSA prediction models 
developed using Ridge, LASSO, and ElasticNet regression.

Figure 4. a) The vertebral measurements used for the second phase 
of the statistical analysis in boys, b) The vertebral measurements used 
for the second phase of the statistical analysis in girls

Table 4. Definitions of vertebral measurements used for the regression formula

Vertebral 
measurements Definitions

TVup-TVlpa The vertical distance between the uppermost and lowest points of the posterior edge of the 3rd cervical vertebra.

FiVDab The vertical distance from the deepest point of the 5th cervical vertebra to the plane between the most anterior and 
posterior points of its lower edge

SVDab The vertical distance from the deepest point of the 2nd cervical vertebra to the plane between the most anterior and 
posterior points of its lower edge

Y3ab The most anterior point of the upper border of the 3rd cervical vertebra and the most posterior point of the lower border.

FVDab The vertical distance from the deepest point of the 4th cervical vertebra to the plane between the most anterior and 
posterior points of its lower edge

PH3a The distance of the perpendicular from the highest point of the posterior edge of the 3rd cervical vertebra to the plane 
formed by the most anterior and most posterior points of the lower edge

UW3a The horizontal distance of the perpendicular descending from the highest point of the anterior edge to the plane formed 
between the upper and lower points of the posterior edge of the 3rd cervical vertebra.

TVDa The vertical distance from the deepest point of the 3rd cervical vertebra to the plane between the most anterior and 
posterior points of its lower edge

TVum-TVdb The vertical distance between the uppermost and lowest points of the medial edge of the 3rd cervical vertebra.

UW4b The horizontal distance of the perpendicular descending from the highest point of the anterior edge to the plane formed 
between the upper and lower points of the posterior edge of the 4th cervical vertebra.

UW5b The horizontal distance of the perpendicular descending from the highest point of the anterior edge to the plane formed 
between the upper and lower points of the posterior edge of the 5th cervical vertebra.

TVpm-TVamb The horizontal distance between the midpoints of the anterior and posterior edges of the 3rd cervical vertebra.
aOnly boys; bOnly girls; abBoth boys and girls



9

Turk J Orthod  Yılmaz and Gonca. Skeletal Age Prediction Using Machine Learning Regression Methods

Morphologic changes in the cervical vertebrae are considered 
useful indicators of skeletal development, although the 
CVM method has some limitations, such as subjectivity and 
inadequate validity and reproducibility.22 We attempted 
to overcome these restrictions by assessing VSA using 
morphometric measurements. CVM and hand-wrist methods 
may be consistent,9,23 making them reliable skeletal maturity 
indicators, especially when HWR images are unavailable.24

The sample sizes in the literature for skeletal age estimation 
from vertebral measurements varied from 66 to 958 individuals. 
Our study sample size was larger than in many studies in the 
literature, except for Roman et al.’s24 study.15-17,25

There are noticeable differences between boys and girls in the 
timing of the growth spurt (pre-peak, peak, and post-peak). 
Hägg and Taranger26 reported that pubertal growth spurts 
begin on average at the age of 10 years in girls and 12 years in 

Figure 5. The X-axis represents the means of the 1st and 2nd measurements. The Y-axis represents the differences between the 1st and 2nd measurements. 
The solid line in the purple area indicates zero bias. The dashed middle line defines bias. The dashed outer lines define the limits of agreement. a) The 
Bland-Altman plot of the consistency between chronologic age (CA) and Greulich-Pyle (GP) age in boys. b) The Bland-Altman plot of the consistency 
between chronologic age (CA) and Ridge regression age in boys. c) The Bland-Altman plot of the consistency between chronologic age (CA) and 
LASSO regression age in boys. d) The Bland-Altman plot of the consistency between chronologic age (CA) and ElasticNet regression age in boys. e) The 
Bland-Altman plot of the consistency between Greulich-Pyle (GP) age and Ridge regression age in boys. f) The Bland-Altman plot of the consistency 
between Greulich-Pyle (GP) age and LASSO regression age in boys. g) The Bland-Altman plot of the consistency between Greulich-Pyle (GP) age and 
ElasticNet regression age in boys

Table 5. The model results obtained according to the minimum mean square error as a result of the Ridge, LASSO, and ElasticNet regression 
models in boys and girls in the second part of the analysis

Boys Ridge LASSO ElasticNet Girls Ridge LASSO ElasticNet

Lambda 0.0762 0.000148 0.002344 Lambda 0.04913915 0.00003718 0.00000113

TVup-TVlp 0.330 0.647 0.326 FVD 0.909 0.935 0.891

FiVD 0.561 0.534 0.564 SVD 0.638 0.614 0.642

SVD 0.487 0.448 0.483 FiVD 0.528 0.481 0.543

Y3 0.252 0.259 0.249 TVum-TVd 0.508 0.513 0.498

FVD 0.318 0.185 0.323 Y3 0.456 0.494 0.435

PH3 0.307 0.019 0.306 UW4 -0.138 -0.149 -0.126

UW3 0.025 0.000 0.031 UW5 -0.064 -0.065 -0.055

TVD -0.059 0.000 -0.048 TVpm-TVam 0.023 0.000 0.033

C 0.889 0.868 0.906 C 1.988 1.892 1.985

df 8 6 8 df 8 7 8

L1 Norm 3.229 2.959 3.236 L1 Norm 5.251 5.143 5.207

R-squared 0.782 0.783 0.781 R-squared 0.74 0.741 0.74

AIC 0.267 0.254 0.267 AIC 0.294 0.289 0.295

LASSO: Least absolute shrinkage and selection operator, AIC: Akaike information criterion
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boys. Fishman27 also reported that the pubertal growth spurt 
ended at the age of 14.77 years in girls and 16.4 years in boys. 
In the present study, VSA was determined separately in boys 
and girls because the difference in growth and development 
between the sexes is often considered important.24,26,27

Previous studies examined C2-C5,9,28,29 C2-C4,4,8,30 and C3-C415-

17,25 vertebrae for estimating skeletal age and maturation from 
cervical vertebrae. In our study, we focused on evaluating C2-
C5 vertebrae.

The age range of the sample of our study (7-18 years) was wider 
than in Caldas et al.’s25 study (7-15.9 years), Mito et al.’s17 study 
(7-14.9 years), and Alhadlaq and Al-Maflehi’s16 study (10-15 
years).

Caldas et al.25 reported that the anterior (TVua-TVla), median 
(TVum-TVd), and posterior (TVup-TVlp) heights of the C3 
vertebrae increased between 10 and 13 years, and the anterior 
(FVua-FVla), median (FVum-FVd), and posterior (FVup-FVlp) 
heights of the C4 vertebrae increased between the ages of 

Figure 6. The X-axis represents the means of the 1st and 2nd measurements. The Y-axis represents the differences between the 1st and 2nd measurements. 
The solid line in the purple area indicates zero bias. The dashed middle line defines bias. The dashed outer lines define the limits of agreement. a) The 
Bland-Altman plot of the consistency between chronological age (CA) and Greulich-Pyle (GP) age in girls. b) The Bland-Altman plot of the consistency 
between the chronologic age (CA) and Ridge regression age in girls. c) The Bland-Altman plot of the consistency between chronologic age (CA) and 
LASSO regression age in girls. d) The Bland-Altman plot of the consistency between chronologic age (CA) and ElasticNet regression age in girls. e) The 
Bland-Altman plot of the consistency between Greulich-Pyle (GP) age and Ridge regression age in girls. f) The Bland-Altman plot of the consistency 
between Greulich-Pyle (GP) age and LASSO regression age in girls. g) The Bland-Altman plot of the consistency between Greulich-Pyle (GP) age and 
ElasticNet regression age in girls

Table 6. Means and errors of test and training set in the first and second analyses for boys and girls

SEX (first and second analysis) Regression  
model Lambda Test Set 

means
Train set 
means

Test set 
errors

Train set 
errors

Male (first analysis)

Ridge 0.809 2.016 1.849 0.159 0.017

LASSO 0.000398 2.048 1.849 0.164 0.016

ElasticNet 0.000027 2.018 1.847 0.159 0.017

Male (second analysis)

Ridge 0.07621 2.134 2.039 0.149 0.016

LASSO 0.000148 2.132 2.031 0.152 0.017

ElasticNet 0.000002 2.135 2.038 0.149 0.016

Female (first analysis)

Ridge 0.05002 1.613 1.456 0.121 0.013

LASSO 0.000012 1.636 1.437 0.17 0.018

ElasticNet 0.0000012 1.633 1.467 0.17 0.018

Female  (second analysis)

Ridge 0.04913915 2.016 1.915 0.192 0.021

LASSO 0.00003718 2.018 1.911 0.191 0.021

ElasticNet 0.00000113 2.016 1.918 0.192 0.021
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11-13 years in girls. In addition, they reported that the anterior 
(Tvua-Tvla), median (Tvum-TVd), and posterior (Tvup-TVlp) 
heights and median width (TVpm-Tvam) of the C3 vertebrae 
increased between 12 and 15 years, but no significant changes 
were observed in the C4 vertebral measurements in boys.25 
Mito et al.17 reported that the anterior, median, and posterior 
heights of the C3 and C4 vertebrae increased rapidly from age 
10 to 13 years in girls.

Alhadlaq and Al-Maflehi16 reported an increase in the heights of 
the C3 and C4 vertebrae between 10-15 years, but the median 
width did not change in this period in boys. In the present study, 
the median height of the C3 vertebrae (TVum-TVd) in girls and 
the posterior height of the C3 vertebrae (TVup-TVlp) in boys 
had high beta coefficients, and the coefficients of C3 height 
measurements were high. However, the concavity depth of all 
vertebrae may have been more pronounced than C4 height 
measurements due to the wider age range compared to other 
studies,16,17,25 and the higher number of independent variables. 
Roman et al.24 found that the most influential variable in 
determining the vertebral maturation period was the vertebral 
depth of concavity.

Likewise, concavity depth at the lower border of C4 (FVd) and 
C3 (TVd) vertebrae in girls and concavity depth at the lower 
border of C5 (FiVD) and C2 (SVD) vertebrae in boys were found 
to be the most influential variables in skeletal age estimation.

Generally, stepwise regression has been used in studies to 
obtain VSA.15-18 Varshosaz et al.15 reported that the anterior 
length of the fourth vertebrae was the most important 
variable for determining skeletal age by performing a stepwise 
multivariable regression analysis. The focus of the present study 
was to introduce different regression models for detecting 
VSA. The power of explainability in their study was R2=0.686, 
whereas, in our study, it was R2=0.741 in girls and R2=0.783 in 
boys.15 Although both studies were conducted in similar age 
groups, our study provided separate evaluations for boys and 
girls. Difference in variables, sample size, ethnic differences, and 
the use of different regression models may have influenced the 
results.

Although many studies have reported that evaluating cervical 
vertebrae with morphologic and morphometric methods yields 
successful results in skeletal age estimation,16,17,23-25,29,31 Beit et 
al.20 reported that methods based on vertebral morphology 
were insufficient for estimating skeletal age. In addition to 
the ratio measurements in their study, the SI angle, which was 
also included in our study, was included. When the first part 
of the statistical analysis was examined in our study, the beta 
coefficient of the SI angle was found to be low, likewise in the 
study of Beit et al.20. Thus, the SI angle was excluded from the 
second part of the statistical analysis. The explanatory power 
of this study model (R2=0.783 for boys, R2=0.741 for girls) was 
found to be higher than for Beit et al.20 (R2=0.693 for boys and 
R2=0.671 for girls). Although our R2 values are higher than those 
in the studies by Varshoaz et al.15 and Beit et al.20, the clinical 

advantage was insufficient to predict the skeletal age.

It is important to evaluate the differences between the two 
methods to assess their compatibility and reproducibility. 
Bland-Altman analysis was used to examine the agreement 
between GP age, CA, and VSA. 

Varshosaz et al.15 evaluated the relationship using the 
correlation method and stated that LCRs are useful for skeletal 
age estimation and might be an alternative to HWRs, with the 
advantage of radiation reduction. In the study of Beit et al.20, 
the limit of agreement between CA and GP skeletal age (in boys 
ULA: 2.1, LLA: -1.7; in girls ULA: 2.2, LLA: -1.2) was found to be 
better than in our study (in boys ULA: 2.17, LLA: -2.36, in girls ULA: 
1.41, LLA: -2.64). They reported that the agreement between 
CA and GP age was higher than the agreement between GP 
age and VSA in both sexes.20 In our study, in both CA and VSA 
(Ridge, LASSO, Elastic Net) graphs of GP age, the width of the 
limits of agreement was wider in boys than in girls (Figures 5a, 
e, f, g, 6a, e, f, g). The width of the limits of agreement of CA-
VSA (Ridge, LASSO, ElasticNet) was wider in girls than in boys 
(Figures 5b, c, d, 6b, c, d). Similar to our findings, by comparing 
GP age with VSA and CA, Beit et al.20 reported that VSA was not 
superior to CA. Therefore, differences in interpretation based 
on statistical analysis methods are important.

In studies performed to obtain VSA, ratio or angular 
measurements were generally used.15-17,20,25 In the present study, 
only linear and angular measurements were included. Although 
image magnification was mentioned as a disadvantage in the 
use of linear measurements,16 the power of explainability in our 
study was higher than the ratio measurements used in other 
studies.15,20

Circumpubertal growth differences are more closely related 
to skeletal age than CA. Variations in the maturation stage are 
closely associated with changes in when and how much growth 
happens. Comprehending the development of the oro-facial 
region is crucial for orthodontic therapy. Determining skeletal 
age is important in creating effective orthodontic treatment 
plans because patients grow at different times, durations, and 
velocities. Orthodontic treatment for growth modification 
requires proper patient selection, appliance prescription, and 
compliance. Clinical decisions involving extra-oral traction 
forces, functional appliances, extraction vs. non-extraction 
therapy, or orthognathic surgery are primarily based on growth 
considerations.32,33

The methods mentioned in our study have provided useful but 
limited information on determining the timing of orthopedic 
treatment or confirming the end of growth. Clinicians should 
know the average differences between chronologic and 
skeletal ages for each sex and identify ages when there is good 
concordance or within clinically acceptable limits of treatment 
or purpose. Suri et al.32 reported that a 0.5-year difference 
between skeletal and CA was acceptable in clinical practice. 
Despite observing high R2 values, no significant clinical 
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advantage was observed when comparing it with CA in the 
present study.

Study Limitations
Skeletal age is influenced by ethnic factors.34 To avoid ethnic 
influences on skeletal growth and development, only 
individuals of Turkish ethnicity were included in this study. 
Although GP atlas assessment has been reported to exhibit 
minimal inter-observer and intra-observer discrepancies, it 
should be noted that this evaluation is inherently subjective.35

Future studies should be conducted using a group-based 
approach, employing larger sample sizes and encompassing 
diverse age ranges within the groups. Variations in vertebral 
maturations may exhibit dissimilarities across distinct age 
cohorts. Evaluations can be made about which vertebral 
variables play a more important role in different age 
groups.16,17,25

This study had several strengths. First, with a sample size of 794 
individuals (329 boys, 465 girls), it included a larger dataset than 
many previous studies evaluating skeletal age through cervical 
vertebrae measurements, except for Roman et al.’s24 study.15-17,25 
Second, by incorporating multiple regression models (Ridge, 
LASSO, and ElasticNet), this study enabled a comparative 
assessment of different predictive methodologies, providing 
insights into their strengths and weaknesses. Additionally, 
the Bland-Altman analysis enhanced reliability by quantifying 
the agreement between VSA and GP skeletal ages, thereby 
improving the interpretability of the findings. However, some 
limitations should be acknowledged. The retrospective design 
and the the inclusion of only a single ethnic group may limit 
the generalizability of the results. Future research should 
incorporate longitudinal data, investigate the influence of 
ethnic variability on skeletal age prediction, and validate 
findings using external datasets to improve model robustness 
and clinical applicability.

CONCLUSION

In our study, the difference in skeletal age estimation was greater 
than 0.5 years, which does not provide enough information in 
clinical practice. Relying on VSA alone to determine the skeletal 
age of individuals within the Turkish population is insufficient 
for determining the timing of orthopedic treatment or 
confirming the end of growth.
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